# Set Subtraction — a Set Operator

Venn Diagrams and Set Subtraction

Sets and relationships between sets are represented visually using Venn Diagrams, which were introduced by mathematician John Venn.

Venn Diagrams
● The universal set 𝕌, which contains all objects under consideration, is represented by a rectangle.
● Circles and other shapes are used inside the rectangle to represent sets (Which are subsets of 𝕌).
● Elements of 𝕌 (or other sets) are represented by dots.

Set Subtraction
Let A and B be any two sets. Subtracting set B from A in this order is the set of all those elements of A which do not belong to B. It is denoted by AB and read as A minus B. The symbol ‘-’ is used to denote the substraction of set B from A. ∴

AB={x:xA and xB}

Similarly,
BA={x:xB and xA}

The Set Subtraction between A and B can be represented by the following Venn diagram Figures (a) Venn Diagram of the set AB (b) BA

The shaded portion represents the Set Subtraction between A and B.
e.g., Let C={1,2,3,4,5}
and D={3,5,7,9}
Then, CD={1,2,4}
and DC={7,9}

⛲ Example 1. E={a,b,d,f},F={b,f,h,i,j}. What is EF? What is FE?
🔑 EF={a,b}. FE={h,i,j}

Set minus. If A and B are sets, We can create a new set named AB (spoken as “A minus B”) by starting with the set A and removing all of the objects from A that are also contained in the set B.
Examples.
● {1,7,8}-{7}={1,8}
● {1,2,3,4,5,6,7,8,9,10}-{2,4,6,8,10}={1,3,5,7,9}

⛲ Example 2: The Set Subtraction
Given

 𝕌={a,b,c,d,e,f,g,h,i,j,k} G={b,d,e,f,g,h} H={a,b,d,h,i} I={b,e,g}

determine a) GH b) GI c) Ḡ-H d) G
✍ Solution:
a) GH is the set of elements that are in set G but not set H. The elements that are in set G but not set H are e, f, and g. Therefore. GH={e,f,g}.
b) GI is the set of elements that are in set G but not set I. The elements that are in set G but not set I are d, f, and h. Therefore. GI={d,f,h}.
c) To determine Ḡ-H, we must first detennine Ḡ.

Ḡ={a,c,i,j,k}.

Ḡ-H is the set of elements that are in set Ḡ but not set H. The elements that are in set Ḡ but not set H are c, j, and k. Therefore. Ḡ-H={c,j,k}.
d) To determine G-Ī. we must first determine Ī.
Ī={a,c,d,f,h,i,j,k}.

G-Ī is the set of elements that are in setA but not set Ī. The elements that are in set G but not set Ī are b, e, and g. Therefore, G-Ī={b,e,g}

Next we discuss the Cartesian product.

⛲ Ex3. Let J={1,2,3,4,5,6},K={2,4,6,8}. Find JK and KJ.
✍ Solution: We have, JK={1,3,5}, since the elements 1, 3, 5 belong to J but not to K and KJ={8}, since the element 8 belongs to K and not to A. We note that JKKJ.

⛲ Ex4. Let L={a,e,i,o,u} and M={a,i,k,u}. Find LM and ML.
✍ Solution: We have, LM={e,0}, since the elements e, o belong to L but not to M and ML={k}, since the element k belongs to M but not to L.

We note that LMML.

Look figures (a) and (b) above, we conclude some knowledge as below.
[Definition] The subtraction of set T from S is the collection of objects in S that are not in T. The subtraction is written ST. In curly brace notation

ST={x:x∈(ST)},

or alternately
ST={x🙁xS)∧(xT)}.

Some Properties of Intersection of Sets
(i) AB=A∩B̄ (ii) BA=B∩Ā
(iii) ABA (iv) BAB

RELATED POSTs